THE RELATIONSHIP BETWEEN FUNCTIONAL CAPACITY, MUSCLE SIZE AND STRENGTH IN CHRONIC ACL DEFICIENT AND ACL RECONSTRUCTED INDIVIDUALS.

ABSTRACT: Aim: The aim of this study was to assess the relationship between the quadriceps muscle atrophy and strength deficits caused by chronic ACL deficiency, and to ascertain whether these deficits were rectified in subjects who had undergone ACL reconstruction.

Methods: Thirteen ACL deficient subjects (ACLD) and eight subjects who had undergone ACL reconstruction (ACLR) participated in the study. Functional capacity, lean thigh volume (LTV), and isokinetic peak torque of the quadriceps and hamstrings muscles were assessed.

Results: The ACLD group had a significantly lower score for episodes of giving way compared to the ACLR group (7.4 ± 3.8 vs. 18.0 ± 3.7; p < 0.01) and a lower score for inability to perform jumping/twisting activities (1.8 ± 0.8 vs. 3.6 ± 1.1; p < 0.01; ACLD vs. ACLR) suggesting decreased functional capacity. However, there was no significant difference between the ACLD group and ACLR group for LTV differences (416.0 ± 276.5 vs. 3.6 ± 1.1; p <0.01; ACLD vs. ACLR) suggesting decreased functional capacity. However, there was no significant difference between the quadriceps eccentric peak torque differences (38.1 ± 13.7 vs. 23.7 ± 18.3 Nm) between involved and uninvolved limbs. The relationship between LTV and quadriceps isokinetic peak torque was r = 0.59 (p < 0.05) for the ACLD group and r = 0.50 (NS) for the ACLR group.

Conclusion: Quadriceps strength deficits are present in ACL deficient subjects, particularly during eccentric contractions. ACL reconstruction improved subjective function and reduced the episodes of giving way, but did not prevent eccentric quadriceps muscle weakness. A low correlation exists between reported function and LTV and eccentric peak torque activity, and between LTV and eccentric peak torque in both ACLD and ACLR groups. These findings suggest that factors other than muscle atrophy are responsible for the functional changes described in ACL deficient and ACL reconstructed groups.

KEYWORDS: ISOKINETIC; ECCENTRIC; CONCENTRIC; TORQUE; LEAN THIGH VOLUME.

INTRODUCTION
The intact anterior cruciate ligament (ACL) is one of the primary stabilizers of the knee joint, and prevents excessive anterior tibial translation. In ACL deficiency, functional activity is compromised (Noyes et al 1983), and subjects report increased episodes of giving way and instability around the knee joint of the affected limb (Noyes et al 1983).

With ACL deficiency, the surrounding knee musculature, particularly the hamstrings muscles, act as secondary stabilizers of the knee joint to prevent anterior tibial translation and episodes of instability and giving way (Solomonow et al 1987). However, quadriceps muscle weakness is present in ACL deficient subjects (Eastlack et al 1999), and it has previously been suggested that this weakness may be caused by altered neuromuscular recruitment activity as a protective mechanism (Solomonow et al 1987; Valeriani et al 1996), to prevent the anterior tibial translation force which is part of the natural action of quadriceps muscle activity. Paradoxically, studies have shown that ACL deficient subjects who perform post-injury rehabilitation programs show improved quadriceps muscle strength capacity and improved muscle functional capacity (Seto et al 1988).

ACL reconstruction, particularly with the bone-patellar tendon-bone autograft, has been shown to improve functional capacity (Cameron et al 1995). However, the management of the ACL reconstructed limb is still controversial, as patients who have undergone ACL reconstruction demonstrate significant weakness of the quadriceps muscle (Delitto et al 1988; Natri et al 1996), despite reporting less frequent episodes of instability and giving way.

This quadriceps weakness after ACL reconstruction may be a residual consequence of the surgical procedure on the
The study was approved by the Ethics and Research Committee of the University of Cape Town and all subjects signed an informed consent prior to the start of the trial. The ACL deficient (ACLD) subjects used in the trial were randomly selected from volunteers who satisfied the following inclusion criteria: i) the ACL rupture occurred between one and fifteen years previous to the trial; ii) the ACL rupture was diagnosed by an orthopedic surgeon and managed conservatively; iii) the normal contralateral knee joint had no previous injury; and iv) subjects had no other medical problems. An additional inclusion criteria for the ACL reconstructed (ACLR) group was that the subject's ACL was reconstructed surgically at least one year or more previously. In both ACL groups, the uninjured limb served as an internal control, age and gender were not regarded as exclusionary criteria. Thirteen ACLD subjects and eight ACLR subjects satisfied the inclusion criteria and participated in the trial.

In the ACLR group, six subjects' ACL were repaired using bone-patellar tendon-bone grafts, one using a semitendinosus graft, and one using a primary repair. Three ACLD subjects injured their menisci during the same episode causing the ACL injury. These meniscal injuries were all repaired immediately after the injury occurred, although the ACL was managed conservatively. All subjects in both ACLD and ACLR groups underwent home-based rehabilitation programs in the acute phase after both ACL injury and reconstruction.

Injury Score
A detailed history was recorded from each subject describing the episode which led to the ACL rupture and the post-injury symptomatology, using the Cincinnati functional rating scale (Noyes et al. 1984). The ACLD and ACLR subjects completed an additional physical activity assessment score, rating level of activity from 0 - 5 before and after their ACL injury.

Magnetic resonance imaging (MRI) scanning
Each ACLD subject underwent a MRI scan (Esaote Biomedica Artoscan, Genoa, Italy) of the damaged limb to verify complete ACL deficiency. A scout scan was performed to assess whether the knee was correctly centered. If the knee was correctly centered, a set of sagittal and transverse T1 weighted 2D scans were performed. For the sagittal section, 16 sections were recorded from the medial side of the knee joint. The sections were 5 mm thick, with a gap of 0.5 mm between each section. If the ACL was not visualized, or if movement artifact occurred, the scan was repeated.

Anthropometry
Each subject's height and mass was recorded, and their body fat was assessed using the sum of the skinfold measurements of the right triceps, biceps, subscapular, supra-iliac skinfold sites (Durnin and Womersley 1974). In addition, the anterior mid-thigh skinfold measurement, the sub-gluteal, mid-thigh and above-knee circumferences were recorded in both limbs to calculate the lean thigh volume (LTV) of the involved and uninvolved limb. This technique for estimating LTV assumes the upper limb to have the shape of a truncated cone, which was adapted from Katch and Katch (1974). The technique has been validated against LTV assessed by MRI (Knapik et al. 1996).

Isokinetic testing of skeletal muscle function
All subjects were tested on a Kin-Com isokinetic dynamometer (Chattanooga Group Inc., USA). Subjects were tested in a sitting position with a 100° angle of hip flexion. The hips, thighs and upper body of all subjects were firmly strapped to the seat of the dynamometer. The axis of rotation of the dynamometer arm was visually aligned with the lateral femoral condyle, and the lower leg was attached to the dynamometer at a level slightly above the lateral malleolus. The knee extendors and flexors were tested both concentrically and eccentrically at a testing speed of 60°s⁻¹. The range of motion was between 7° of flexion and 83° of flexion, with the reference point being full extension. Tis et al (1993) showed that maximal torque is not altered by variations in the range of motion during isokinetic activity testing. The subjects were warmed up using submaximal concentric and eccentric contractions for five repetitions before testing commenced. The subjects performed three maximal trials for each test. The subjects were verbally encouraged to exert maximal effort during each test. The highest peak torque achieved during these three tests was used for subsequent analysis. Both involved and uninvolved limb were tested in all subjects. As the uninvolved limb served as an internal control, gravity correction factors were not applied to the data.

Statistics
All data are expressed as the difference between injured and uninjured limbs in the ACLD and ACLR groups. All data are expressed as mean ± standard deviation. A paired T test was used to compare data of the differences between uninvolved and involved limbs of ACLD and ACLR groups. An independent T test was used to compare differences in strength and size data of the involved
limbs of ACLD and ACLR groups. Statistical significance was accepted when \(p < 0.05 \). A Wilcoxon matched pairs test was used to analyze the non-parametric functional scale data. Pearson’s product moment correlation and Spearman’s rank order correlation were used to determine relationships between parametric and non-parametric variables respectively.

RESULTS

There were no significant differences between age, stature, mass or estimated body fat between ADLD and ACLR groups (Table 1). All subjects had injured their ACL or had undergone surgical reconstruction of their injured ACL between one and 15 years previously. The length of time since the injury occurred is described in Table 2.

Table 1. Descriptive data of the subjects in the ACL deficient (ACLD) \((n = 13)\) and the ACL reconstructed (ACLR) \((n = 8)\) groups.

<table>
<thead>
<tr>
<th></th>
<th>ACLD</th>
<th>ACLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>37.8 ± 11.5</td>
<td>35.9 ± 6.1</td>
</tr>
<tr>
<td>Stature (cm)</td>
<td>173 ± 8</td>
<td>174 ± 7</td>
</tr>
<tr>
<td>Body mass (kg)</td>
<td>74.9 ± 14.3</td>
<td>79.1 ± 13.0</td>
</tr>
<tr>
<td>Body fat (%)</td>
<td>22.3 ± 7.2</td>
<td>24.1 ± 5.2</td>
</tr>
</tbody>
</table>

All values are mean ± SD

Table 2. The time period (years) since ACL injury occurred in the ACL deficient (ACLR) and the ACL reconstructed (ACLR) groups.

<table>
<thead>
<tr>
<th></th>
<th>ACLD</th>
<th>ACLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5 years</td>
<td>n = 3</td>
<td>n = 4</td>
</tr>
<tr>
<td>6-10 years</td>
<td>n = 4</td>
<td>n = 3</td>
</tr>
<tr>
<td>11-15 years</td>
<td>n = 6</td>
<td>n = 1</td>
</tr>
</tbody>
</table>

Table 3. Physical activity levels of the ACL deficient (ACLD) \((n = 13)\) and ACL reconstructed (ACLR) \((n = 8)\) groups pre- and post-injury.

<table>
<thead>
<tr>
<th>Activity Level</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACLD Pre-injury</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Post-injury</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>0*</td>
</tr>
<tr>
<td>ACLR Pre-injury</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Post-injury</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>0*</td>
</tr>
</tbody>
</table>

All data are \(n \) subjects in each category: \(0 - \) no activity; \(1 - \) sedentary activity; \(2 - \) light activity; \(3 - \) moderate activity; \(4 - \) strenuous activity

* : \(p < 0.05 \)

ACLD Pre-injury vs. Post-injury
ACLR Pre-injury vs. Post-injury

Table 4. Cincinnati functional score rating for the affected limb of ACL deficient (ACLD) \((n = 13)\) and ACL reconstructed (ACLR) \((n = 8)\) groups.

<table>
<thead>
<tr>
<th>Activity</th>
<th>MAX</th>
<th>ACLD</th>
<th>ACLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain</td>
<td>20</td>
<td>11.7 ± 4.0</td>
<td>15.5 ± 2.6*</td>
</tr>
<tr>
<td>Swelling</td>
<td>10</td>
<td>7.9 ± 2.3</td>
<td>8.3 ± 2.3</td>
</tr>
<tr>
<td>Giving way</td>
<td>20</td>
<td>7.4 ± 3.8</td>
<td>18.0 ± 3.7**</td>
</tr>
<tr>
<td>Overall activity</td>
<td>20</td>
<td>12.3 ± 2.9</td>
<td>16.0 ± 3.0*</td>
</tr>
<tr>
<td>Walking</td>
<td>10</td>
<td>8.7 ± 1.9</td>
<td>9.0 ± 1.5</td>
</tr>
<tr>
<td>Stair climbing</td>
<td>10</td>
<td>8.6 ± 1.8</td>
<td>9.5 ± 0.9</td>
</tr>
<tr>
<td>Running</td>
<td>5</td>
<td>3.3 ± 1.1</td>
<td>4.3 ± 0.7*</td>
</tr>
<tr>
<td>Jumping/Twisting</td>
<td>5</td>
<td>1.8 ± 0.8</td>
<td>3.6 ± 1.1**</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>62.0 ± 10.0</td>
<td>83.6 ± 7.2**</td>
</tr>
</tbody>
</table>

All values are mean ± SD.

* : \(p < 0.05 \)

ACLD vs. ACLR
ACLR vs. ACLR

** : \(p < 0.01 \)

ACLD vs. ACLR
ACLR vs. ACLR

The quadriceps of the involved limb was significantly weaker than the uninjured limb in both ACLD and ACLR groups (Table 5) during both concentric and eccentric exercise. This difference in strength between involved and uninjured limb was greater during eccentric than concentric activity in both ACLD (3542 ± 905 vs. 3126 ± 693 cc; involved vs. uninjured limb; \(p < 0.01 \)) and ACLR (3909 ± 841 vs. 3670 ± 849 cc; involved vs. uninjured limb; \(p < 0.05 \)) groups. The difference between involved and uninjured limb was greater in the ACLD compared to ACLR group (416 ± 276 vs. 238 ± 439 cc; NS), although this difference was not significant (Figure 2).

The quadriceps of the involved limb was significantly weaker than the uninjured limb in both ACLD and ACLR groups (Table 5) during both concentric and eccentric exercise. This difference in strength between involved and uninjured limb was greater during eccentric than concentric activity in both ACLD (3542 ± 905 vs. 3126 ± 693 cc; involved vs. uninjured limb; \(p < 0.01 \)) and ACLR (3909 ± 841 vs. 3670 ± 849 cc; involved vs. uninjured limb; \(p < 0.05 \)) groups. The difference between involved and uninjured limb was greater in the ACLD compared to ACLR group (416 ± 276 vs. 238 ± 439 cc; NS), although this difference was not significant (Figure 2).

The quadriceps of the involved limb was significantly weaker than the uninjured limb in both ACLD and ACLR groups (Table 5) during both concentric and eccentric exercise. This difference in strength between involved and uninjured limb was greater during eccentric than concentric activity in both ACLD (3542 ± 905 vs. 3126 ± 693 cc; involved vs. uninjured limb; \(p < 0.01 \)) and ACLR (3909 ± 841 vs. 3670 ± 849 cc; involved vs. uninjured limb; \(p < 0.05 \)) groups. The difference between involved and uninjured limb was greater in the ACLD compared to ACLR group (416 ± 276 vs. 238 ± 439 cc; NS), although this difference was not significant (Figure 2).
The relationship between LTV and peak torque (Castro et al. 1995) in uninjured individuals. In contrast a weaker relationship was found between LTV and eccentric peak torque in both ACLD (r = 0.59) and ACLR (r = 0.50) groups in this study. This suggests that factors other than the loss of muscle mass may have contributed to the loss of eccentric peak torque. As the majority of subjects were injured five years or more previously, and the minimum duration since injury was one year, it may be assumed that these muscle changes are permanent. It is not clear why this poor correlation between LTV and peak torque occurs in both ACLD and ACLR groups.

This finding may be caused by i) submaximal recruitment of the knee extensors during testing; ii) inability of the subjects to maximally recruit their knee extensors due to alteration in the muscle contractile apparatus; iii) inability of the subjects to maximally recruit their knee extensors during eccentric testing due to the ACL deficiency.

DISCUSSION

In this study, there were no significant differences between the impairment in quadriceps isokinetic muscle function in the ACL deficient and the ACL reconstructed groups even though the ACLR group had better general function in their damaged limb compared to the ACLD group. Others have reported similar strength deficits after ACL reconstruction (Delitto et al. 1988). Hence ACL reconstruction improves the individual’s functional ability but not quadriceps isokinetic strength in this population group. It has been suggested that intra-operative insult, particularly to the patellar-femoral joint (PFJ) may be the cause of the quadriceps strength deficits present after ACL reconstruction (Amendola and Fowler 1992). However, this study indicates that the isokinetic strength deficits in the ACL reconstructed group may be intrinsic to the loss of the ACL itself, and may not be related to the intra-operative procedures, as there were no significant differences in the eccentric strength deficits present in the two chronic ACL deficient groups. The possibility exists also that in the ACL reconstructed individuals, the muscle strength deficits were the result of a combination of the loss of the ACL itself, and intra-operative PFJ complications occurring concurrently. However, if this were so one would expect greater strength deficits in the ACLR compared to ACLD group. But, in this study the strength deficits of the involved limb were less in the ACLR group.

Several studies have shown that there is a strong relationship between LTV and both quadriceps and hamstring isokinetic concentric and eccentric peak torque (Castro et al. 1995) in uninjured individuals. In contrast a weaker relationship was found between LTV and eccentric peak torque in both ACLD (r = 0.59) and ACLR (r = 0.50) groups in this study. This suggests that factors other than the loss of muscle mass may have contributed to the loss of eccentric peak torque. As the majority of subjects were injured five years or more previously, and the minimum duration since injury was one year, it may be assumed that these muscle changes are permanent. It is not clear why this poor correlation between LTV and peak torque occurs in both ACLD and ACLR groups.

This finding may be caused by i) submaximal recruitment of the knee extensors during testing; ii) inability of the subjects to maximally recruit their knee extensors due to alteration in the muscle contractile apparatus; iii) inability of the subjects to maximally recruit their knee extensors during eccentric testing due to the ACL deficiency.
to changes in efferent neural activity (Valeriani et al 1996) or altered proprioceptive input from the knee joint after ACL injury and reconstruction (Gleeson et al 1999).

If alterations to the muscle apparatus caused the strength deficits, one would except muscle to show signs of atrophy of the tissue itself. However, although studies have show that in the acute phase after ACL injury there is morphological muscle atrophy (St Clair Gibson 1997), studies of muscle morphology in subjects with chronic ACL deficiency or reconstruction with large strength deficits have failed to show morphological muscle atrophy (Lorentzon et al 1989). However, one can not exclude the possibility that changes to the tendon or elastic components of the quadriceps muscle caused the decreased strength output.

Several researchers have postulated that strength deficits after ACL rupture may be caused by alteration in afferent proprioceptive input inhibiting quadriceps strength output (Solomonow et al 1987; Valeriani et al 1996). This hypothesis may explain our findings, as although in the ACL reconstructed group, the ACL has been mechanically replaced by other tissues, no studies have shown that proprioceptors present in the native ACL and destroyed by ACL disruption are precisely maintained in the replacement graft tissue, and thus proprioceptive input would not be improved by ACL reconstruction. Also, studies have shown that after ACL rupture or reconstruction, subjects score significantly lower for proprioceptive testing in the involved limb (Gleeson et al 1999). Other studies have suggested that there might be reprogramming of the efferent CNS command to the muscle surrounding the knee joint after ACL disruption, either as a protective or a compensatory mechanism (Valeriani et al 1996).

A significant number of ACLD subjects scored poorly in their ability to perform activities such as running, jumping, walking up stairs, and in particular the ability to rotate on the injured knee. A large proportion indicated that the unexpected “giving way” or collapse of the affected limb was a major problem. A high proportion or athletes do not return to their previous levels of sports participation after ACL injury, either due to poor knee function (Solomonow et al 1987) or fear of further injury (Bjordal et al 1997). The poor relationship between the Cincinnati functional rating scores and both LTV (r = 0.44) and isokinetic peak torque deficits (r = 0.43) in the ACLD group indicates that LTV and peak torque deficits do not predict the Cincinnati score. The finding that the ACLR subjects had significantly less episodes of instability and giving way than ACLD subjects, despite not significantly different LTV and peak torque deficits, similarly indicates that the functional ability of the subject is not strongly related to the underlying muscle pathology.

It is unlikely that the changes in LTV and quadriceps eccentric peak torque in both ACL groups can be attributed solely to disuse atrophy as the uninjured limb of each subject was
deficits may be related to level of rehabilitation of the subjects after ACL rupture or reconstruction. All the subjects in this trial had no formal rehabilitation, instead using home-based self-driven rehabilitation protocols. Other studies have reported lesser strength deficits than that found in our study (Shelbourne and Gray 1984). Therefore, the changes in our study may have been caused by poor post-injury rehabilitation. However, the fact that the length of time since injury was five years or longer in most subjects weakens this hypothesis, as most subjects had resumed physical activity or performed routine activities of daily living.

As discussed previously, quadriceps isokinetic peak torque strength measurements in the ACLR group and the ACLD groups were significantly lower than in the involved limb. These strength deficits were present to a greater degree during eccentric compared to concentric activity. There are two possible reasons for these findings. Firstly, there may be a greater relative decrease in strength caused by the fact that eccentric torque output is greater than concentric torque output, thus would be more affected by whatever process is causing the decreased quadriceps force output. Secondly, the eccentric deficits may be related to the hypothesis that eccentric activity has different neural control mechanisms to concentric muscle activity (Enoka 1996). Therefore eccentric activity may altered by different efferent instructions to those of concentric activity, if neural activity changes are responsible for the strength deficits in the ACL deficient and ACL reconstructed subjects.

In contrast, the hamstring musculature of all groups did not exhibit significant differences in either concentric or eccentric isokinetic peak torque except in the ACLD group during eccentric activity. This finding is expected, as studies have shown the hamstrings muscles are natural synergists of the ACL, with increased activity in ACL deficient and reconstructed subjects to prevent anterior tibial translation, perhaps as a reflex action (Solomonow et al 1987).

The majority of the ACLR subjects in the trial underwent bone-patellar tendon-bone ACL reconstruction, with the remainder undergoing semitendinosus reconstruction or primary repair. These data are similar to that described in demographic studies (St Clair Gibson et al 1998) of the management of ACL injuries. Although the ACLR group had diverse surgical procedures, the strength of the study was that subjects were randomly recruited, which makes the results generally applicable.

In conclusion this study shows that chronic ACL deficiency results in muscle size and strength deficits in the quadriceps muscle of the injured limb. ACL reconstruction, despite improving limb stability, does not rectify either the quadriceps strength or muscle deficit completely in this population group. A poor correlation exists between reported function and LTV and eccentric peak torque activity, and between LTV and eccentric peak torque in both ACLD and ACLR groups. These findings suggest that factors other than muscle atrophy are responsible for the changes in the involved limb of the ACL deficient and ACL reconstructed groups.

ACKNOWLEDGMENTS

The Medical Research Council (MRC) of South Africa and the Duncan Baxter Research Fund of the University of Cape Town supported this study.

REFERENCES

Cameron SE, Wilson W, St Pierre P 1995 A prospective, randomized comparison of open vs. arthroscopically assisted ACL reconstruction. Orthopaedics 18:249-252
Durin JVGA, Womersley J 1974 Body fat assessed from total body density and it's...
estimation from skinfold thickness. Measurements on 481 men and women aged from 16 to 72. Br J Nutrition 32:77-79

Enoka RM 1996 Eccentric contractions require unique activation strategies by the nervous system. J Appl Physiol 81:2339-2546

QUALIFIED PHYSIOTHERAPISTS ARE IN DEMAND IN: AUSTRALIA, CANADA AND NEW ZEALAND

If you are interested in moving ahead, we at Four Corners Emigration are specialists in Personal and Business Migration. Our international team of experts will guide you through the complex and constantly changing immigration regulations. Allow one of our consultants to inform you of the different packages we offer. We provide the most comprehensive advice and assistance on emigrating to the country of your choice. We consult throughout Southern Africa.

Bloemfontein Consultations 7th August 2000
Johannesburg Consultations 8th & 22nd August 2000
Cape Town Seminar 18th August 2000
Port Elizabeth Consultations 23rd August 2000
Durban Consultations 24th August 2000

Johannesburg (011) 881 5834 • Cape Town (021) 465 0130
enquiries@4-corners.co.za

Four Corners emigration

Johannesburg Consultations 7th August 2000
Johannesburg Consultations 8th & 22nd August 2000
Cape Town Seminar 18th August 2000
Port Elizabeth Consultations 23rd August 2000
Durban Consultations 24th August 2000

Call: 021 975 1556

email: locums@asa-locums.co.uk

ASA
the Professionals’ Agency

Locum and Permanent vacancies in the UK for:
Physiotherapists
Occupational Therapists
Speech & Language Therapists

UK OFFICE, ANGELA SHAW ASSOCIATES
Call us free from South Africa on:
0800 990 767

SA OFFICE, DANIEL KOTZE
Call:
021 975 1556

call: +44 (0)20-8554 7691
fax: +44 (0)20-8554 9900
email: locums@asa-locums.co.uk

Montrose House, 412-416 Eastern Avenue, Ilford, Essex, IG2 6NQ, UK.