The Effect of Choral Music on Emotions, Immune Parameters and Lung Function during Physiotherapy Treatment of Pneumonia and Bronchitis

ABSTRACT: Introduction: Music, processed by the brain, has a strong impact on the emotions and health. The Magnificat in D major of JS Bach communicates not only a positive emotion of happiness but also motivational behaviour. Infectious lung conditions are often associated with negative emotions which develop due to physiological changes. The hormonal action of the hypothalamus-pituitary-adrenal axes (HPA) could be negatively affected by emotions of anger and depression. This will result in a disturbance of the mind-body interaction. Music therefore can exert a powerful influence on therapeutic benefits by changing the psychological status and the immune endocrine functions.

The purpose of this study was to determine the effect of music, during respiratory physiotherapy treatment on a) the emotional status, b) neuroendocrine responses, c) immune functions and d) lung functions of subjects with infected lung conditions.

Method and Materials: Forty subjects attending physiotherapy treatment was selected according to set criteria and randomly assigned to an experimental and control group. The parameters (Profile Of Mood State [POMS]; CD4:CD8 cell ratios; Cortisol; the Cortisol: DHEA ratio; PF; FEV1; FVC and FEV1/FVC %) were measured on day 1 before the treatment and on day 3 after the treatment. Data were analysed with Statistica (Statsoft) using the Repeated ANOVA tests.

Results: Results indicated that the intervention of music had a positive effect on the immunological parameter (CD4+:CD8+ cell ratios) and on the cortisol and cortisol:DHEA ratio levels. At the same time the psychological status as measured by Profile of Mood States (POMS scale) improved with a significant improvement in the lung functions.

Conclusion: The research provided sufficient scientific evidence that music affects both the biomedical and psycho-somatic aspects of infectious lung conditions.

KEY WORDS: PHYSIOTHERAPY; MUSIC; EMOTIONS; IMMUNE PARAMETERS; ENDOCRINE HORMONES.
cell-mediated (Rider and Achterberg, 1990) and humoral immunity (Rider and Weldin, 1990) via the use of immune system imagery accompanied by background music, and that, combining music with other psychosomatic interventions indicates a decrease of cortisol levels and an increase of interleukin-1 (Bartlett, Kaufman and Smeltekop, 1993). A study by Hirokawo and Ohira (2003) reported that music altered the mood of stressed subjects, but with no changes of the immune parameters.

The aim of respiratory physiotherapy treatment as stated by Bott and Moran (1995) is - to reduce fear and anxiety, breathlessness; to improve the efficiency of ventilation; mobilise and aid expectoration of secretions; management of pathology; as well as knowledge to improve exercise tolerance. Batt (2000) stated that reduction of fear and anxiety may be achieved with the normal physiotherapeutic skills of compassion and caring. The acoustic stimuli has been used successfully in physiotherapy to reduce pain (Le Roux, 1999) to create a positive experience between the physiotherapist and paediatric patients with cystic fibrosis (Grasso et al, 1999) and to improve healthy interrelationship between physiotherapist and patient (Booker et al 1985).

The purpose of this study was to investigate the effect of music on selective parameters, while the patients were receiving physiotherapeutic treatment for pneumonia and bronchitis. The hypotheses for this study were a) music would effect the emotions, immune and endocrine systems, b) there would be a relation between the psychosomatic and biomedical changes and c) there would be a significantly positive change of emotions in the experimental group in comparison with the control group.

METHODS

Forty subjects (n = 40) with pneumonia or acute bronchitis, diagnosed by general practitioners, were randomly selected to participate in this study. Randomisation was carried by means of sealed envelopes: each patient was requested to choose an envelope and upon unsealing, was assigned to the group as indicated. All the subjects were recruited from a private physiotherapy practice (Fish Hoek, South Africa) after referral from a general practitioner for treatment. The research was approved by the Human Research Committee of Stellenbosch University. The subjects falling within the age range of 35-75 years signed a consent form to indicate their willingness to participate in the study. Each patient was coded and all samples were blinded to the laboratory personnel conducting the assays.

The following subjects were excluded from the study:

1. HIV positive subjects.
2. All subjects who presented with secondary lung pathology, as diagnosed by general practitioners.
3. Subjects using immune modulated drugs like Moducare or cortisone.

PROCEDURE

Subjects had objective and subjective evaluation of the respiratory system on the first day. The information obtained was reviewed in order to select participants according to the inclusion criteria. The subjects were asked to complete the Profile of Mood States (POMS-scale). After completion approximately 15cc blood was drawn by a registered nurse appointed by the local pathological services. This blood sample was transported to the laboratory at Tygerberg Hospital for analysis under supervision of a microbiologist. The following tests were conducted: Cortisol levels (RIA, Amerhsam), the Cortisol: DHEA ratio and CD4: CD8 cell ratios (by flow cytomtery).

For the lung function determination, the subjects were asked to undertake forced expiration into a calibrated ventilometer while standing. The subjects received respiratory physiotherapy treatment which included nebulising with atrovent/saline solution, percussions, breathing exercises and active coughing.

The music intervention for the subjects who were randomly assigned to the experimental group consisted of the volunteers listening to the Magnificat in D major BWV243 of J.S. Bach for the duration of treatment, which was restricted to 30 minutes. The control group received only the standard physiotherapy treatment for the same duration of time. The treatment was repeated for three consecutive days and at the end of the third treatment, the measuring procedure was repeated.

Instruments and outcome measures

The POMS scale consists of 65 items in a self-report inventory of adjectives that describes different positive and negative emotional states. Subjects rate each item on a 5-point scale from 0 (not at all) to 4 (extremely). Scoring potentially results in scores for each of six discrete affective states: Tension/Anger; Depression/Dejection; Depression/Depression; Anger/Hostility; Vigour/Activity; Fatigue/Inertia and Confusion/Bewildement. The POMS was selected because it has been standardised for a non-psychiatric population (McNair et al, 1981).

Whole blood samples (EDTA-anti-coagulated) were processed within 6 hours of blood drawn. Briefly, 100uL blood was mixed with an 20uL aliquot of a mixture of monoclonal antibodies purchased from Becton Dickson (SA Scientific, Cape Town). The tubes containing the blood and monoclonal antibody mixture were incubated at room temperature for 15 minutes in the dark and thereafter 450uL of a lysing buffer (FACS lysing buffer, Becton Dickinson, SA Scientific, Cape Town) was added to each tube. The tubes were incubated in the dark for a further 10 minutes at room temperature and subsequently analysed on a flow cytometer (FACS Calibur, Becton Dickson, SA Scientific, Cape Town).

The adrenal cortisol and dihydroepiandrosterone sulphate (DHEAs) were measured in clotted blood samples collected at the same time as those above. The samples were centrifuged and the serum stored at –20ºC until assayed. The two hormones were assayed with radio-immune assays (Amerhsam, Cape Town). The results were expressed as individual hormones (DHEAs in umol/L and cortisol in nmol/L) or as the ratio between the cortisol:DHEAs levels in order to normalize the individual variations. All assays were conducted on the frozen sera in order to minimise batch to batch variation in the measurements.

The measurement of the lung functions were performed by a calibrated ventilometer (Clement Clark; Kat no 310 8001 Reg Des no 1060400 Patent
GB 2238130 UK). The peak flow (PF), forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) and the % of FEV1 / FVC were measured by a registered physiotherapist, the highest values were taken from three satisfactory attempts.

RESULTS

Comparison of the parameters of the two groups at baseline indicated that the groups were balanced and that no statistical differences existed prior to the intervention and assays for the diverse biological markers. Nine (9) men and 31 females were included in the study. (See Table 1, Demographics of groups at baseline).

Hormonal and immune changes

Our results show that the experimental group had reduced their serum cortisol levels on the third day, (368 vs. 336) whereas the same parameter had increased in the control group during the same period (409 vs. 447). The difference between the experimental and control group was statistically significant (p< 0.001). Cortisol is known to have immune suppressive activity on the functioning of the white blood cells and since these results indicate that the intervention with music lead to a drop of this hormone in the experimental group, it implies that after music intervention and physiotherapy treatment, this group would have improved more dramatically when compared to the control group.

Other parameters which substantiate the above observation include the results of the cortisol: DHEA ratio: in the experimental group, this ratio was significantly reduced by day 3 whereas in the control group, this ratio had increased. The difference was also statistically significant (p< 0.001). Cortisol is known to have immune suppressive activity on the functioning of the white blood cells and since these results indicate that the intervention with music lead to a drop of this hormone in the experimental group, it implies that after music intervention and physiotherapy treatment, this group would have improved more dramatically when compared to the control group.

Furthermore, the immune parameter of CD4: CD8 cell ratios reveal a significant difference among the experimental group on the third treatment day (2.07 +/- 0.95 vs. 2.25 +/- 1.17, p = 0.045) whereas the ratio in the control group had declined over the same period of time 2.18 +/- 1.46 vs. 2.06 +/- 1.46. Again, the difference between groups was statistically significant (p < 0.001). Once again, an increase in the ratio between the CD4 and CD8 cells implies a less suppressed state and this is clinical relevant to the outcome of an infective state.

Emotions

(See Figure 1).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Experimental Gr Day 1</th>
<th>Control Group</th>
<th>Significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortisol</td>
<td>368.1 +/- 134.17</td>
<td>409.55 +/- 156.3</td>
<td>NS</td>
</tr>
<tr>
<td>Cort: DHEA ratio</td>
<td>295.17 +/- 195.75</td>
<td>356.26 +/-225.51</td>
<td>NS</td>
</tr>
<tr>
<td>Average POMS</td>
<td>99.30 +/- 46.98</td>
<td>93.75 +/- 33.93</td>
<td>NS</td>
</tr>
<tr>
<td>FVC</td>
<td>2.15 +/- 0.79</td>
<td>2.22 +/- 1.05</td>
<td>NS</td>
</tr>
<tr>
<td>FEV1</td>
<td>1.60 +/- 0.84</td>
<td>1.70 +/- 0.87</td>
<td>NS</td>
</tr>
<tr>
<td>FVC/FEV1</td>
<td>0.73 +/- 0.25</td>
<td>0.74 +/- 0.20</td>
<td>NS</td>
</tr>
<tr>
<td>PF</td>
<td>316 +/- 91.79</td>
<td>303.16 +/- 146.12</td>
<td>NS</td>
</tr>
<tr>
<td>CD4+:CD8+ ratio</td>
<td>2.07 +/- 0.95</td>
<td>2.18 +/- 1.46</td>
<td>NS</td>
</tr>
</tbody>
</table>

NS = not significant

Figure 1: The parameters of the POMS subscale comparing the experimental and control group.
The subscale of depression and anger showed no significant changes in the control group, but significant changes in the experimental group regarding depression (p = 0.001) and anger (p = 0.007). In Figure 1 the composite parameters of the POMS scale are represented: it can be seen that although both groups showed an improvement in the general POMS composite value, the change was greater for the experimental group when compared to that of the control group.

The experimental group showed the most dramatic changes in the psychological parameters measured individually (Dep, Ten, etc) as well as collectively (total score) expressed as the composite POMS score. This is evident when one compares the parameters for the control group (Table 2) to those measured in the experimental group (Table 3).

Lung Functions
The ventilometer parameters measured showed the most dramatic positive changes in the experimental group. Indeed, as shown in Table 4, the peak flow of these patients reveal a dramatic increase of 70 litres (316 +/- 91.8 day 1 vs. 382.4 +/- 68.3 day 3; p < 0.0001). In the control group, this change was less dramatic although the patients did show an improvement (303 +/- 146.1 day 1 vs. 308.6 +/- 154.4 day 3, NS). The change in this parameter between groups was statistically significant (p < 0.006)

DISCUSSION
During an infective illness, negative emotions are induced, which could be ascribed both to physiological (due to biochemical changes) and psychological changes (Knapp, 1992; De Rijk et al, 1997).

The tension/anxiety subscale of the POMS scale in both the experimental and control group were significantly improved. However, when one compares the differences between groups, it appears that the intervention with music adds substantial value to physiotherapy: the control group registered no significant changes in the subscale of anger/hostility and depression while the experimental group indicated significant statistically differences in both the anger/hostility subscale (p = 0.007) and depression subscale (p = 0.001) despite these parameters being similar (not statistically significant) at baseline.

Depression has often been interpreted as suppressed anger (Pert, 1997). It is feasible that the negative suppressed emotion of the control group also resulted into a higher level of cortisol by day 3, whereas the experimental group (p = 0.009) had significantly lowered their cortisol level. Although short-term decreases in cortisol following periods of listening to music have been observed in healthy individuals (Bartlett, Kaufman and Smeltekop, 1993) and listening to music has been shown to buffer the cortisol increase experienced by patients undergoing surgery with epidural anaesthesia (Tanoika et al, 1985), no research has as yet been undertaken on infected diseases with related negative emotions. Previous studies also indicate a relationship between a decrease of tension

Table 2: Changes in various sub-parameters of the POMS scale in the control group over a period of 3 days (baseline versus day 3).

<table>
<thead>
<tr>
<th>Sub-Parameter</th>
<th>Day 1 Baseline</th>
<th>Day 3 After intervention</th>
<th>Significance (p = 0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEN</td>
<td>20.55 +/- 7.51</td>
<td>17.4 +/- 9.01</td>
<td>NS</td>
</tr>
<tr>
<td>DEP</td>
<td>23.25 +/- 9.57</td>
<td>20.45 +/- 11.36</td>
<td>NS</td>
</tr>
<tr>
<td>ANG</td>
<td>18.3 +/- 12.05</td>
<td>16.2 +/- 11.20</td>
<td>NS</td>
</tr>
<tr>
<td>CON</td>
<td>15.1 +/- 5.86</td>
<td>13.4 +/- 6.13</td>
<td>NS</td>
</tr>
<tr>
<td>FAT</td>
<td>17.15 +/- 8.51</td>
<td>15 +/- 6.81</td>
<td>NS</td>
</tr>
<tr>
<td>VIG</td>
<td>-19.9 +/- 8.26</td>
<td>-21.6 +/- 7.71</td>
<td>NS</td>
</tr>
<tr>
<td>Total POMS scale</td>
<td>93.75 +/- 33.93</td>
<td>82.20 +/- 38.14</td>
<td>NS</td>
</tr>
<tr>
<td>NS = not significant</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Changes in various sub-parameters of the POMS scale in the experimental group over a period of 3 days (baseline versus day 3).

<table>
<thead>
<tr>
<th>Sub-Parameter</th>
<th>Day 1 Baseline</th>
<th>Day 3 After intervention</th>
<th>Significance (p = 0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEN</td>
<td>21.45 +/- 8.86</td>
<td>15.3 +/- 7.95</td>
<td>0.0004</td>
</tr>
<tr>
<td>DEP</td>
<td>25.76 +/- 15.0</td>
<td>17.5 +/- 9.60</td>
<td>0.001</td>
</tr>
<tr>
<td>ANG</td>
<td>16.9 +/- 11.63</td>
<td>11.75 +/- 6.36</td>
<td>0.007</td>
</tr>
<tr>
<td>CON</td>
<td>15.6 +/- 7.7</td>
<td>12.7 +/- 7.07</td>
<td>0.006</td>
</tr>
<tr>
<td>FAT</td>
<td>19.65 +/- 9.70</td>
<td>13.25 +/- 8.58</td>
<td>0.00001</td>
</tr>
<tr>
<td>VIG</td>
<td>-17.3 +/- 7.02</td>
<td>-21.15 +/- 5.49</td>
<td>0.0002</td>
</tr>
<tr>
<td>Total POMS scale</td>
<td>99.30 +/- 46.98</td>
<td>70.35 +/- 36.19</td>
<td>0.0003</td>
</tr>
<tr>
<td>NS = not significant</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Changes in the ventilometric measurement in the experimental group over the 3 day period of study.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Day 1 Baseline</th>
<th>Day 3 After intervention</th>
<th>Significance (p = 0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC</td>
<td>2.15 +/- 0.79</td>
<td>2.22 +/- 0.75</td>
<td>NS</td>
</tr>
<tr>
<td>FEV1</td>
<td>1.60 +/- 0.84</td>
<td>1.89 +/- 0.68</td>
<td>NS</td>
</tr>
<tr>
<td>FVC/FEV1</td>
<td>0.73 +/- 0.25</td>
<td>0.81 +/- 0.19</td>
<td>NS</td>
</tr>
<tr>
<td>PF</td>
<td>316 +/- 91.79</td>
<td>382.25 +/- 68.33</td>
<td>0.00001</td>
</tr>
<tr>
<td>NS = not significant</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This indicates that our emotions, immune and nervous system conceptually form an indivisible whole, and this also demonstrates communication between the body, mind and emotions. The findings of the research provide sufficient substantiation to conclude that immune modulation through specific functional music is able to provide a positive emotional action and better lung function. The research data confirm the healing value of music within both the psychosocial and biomedical aspects of the infectious lung conditions.

REFERENCES

Cohen HJ 2000 Editorial: In search of the underlying mechanisms of frailty. Journals of Gerontology: Biological Sciences and Medical Sciences, ssa, M706-M708.

Hirokawa E, Ohira H 2003 The effects of music listening after a stressful task on immune functions, neuroendocrine responses and emotional states in college students. Journal of Music Therapy XL(3):189-211.

Le Roux FH 1999 Die effek van Largo-tempo musiek op pyn tydens fisioterapeutiese behandeling van werwelkolom patologie. MA thesis, University of Western Cape.

(relaxation) and a decrease of cortisol among hypertension and diabetic persons (Surwit and Feinglos, 1984). A previous study by McCraty (1999) reveals a relation between increased anger and cortisol: DHEAs ratio. The latter correlates with this researcher’s findings relating to the significant decrease of the subscale anger and the cortisol: DHEA’s ratio (p = 0.04). These findings indicate that the hormonal action of the hypothalamus-pituitary-adrenal axis (HPA) could be negatively affected by suppressed emotion.

The hypothalamus, is the area involved in the processing of music and emotions (Roederer, 1985). The music stimuli would first reach the thalamus, which is connected to the amygdala, the process area of negative emotions. If all negative emotions are not strongly expressed, these will create a blockage of the neuropeptides flow. Previous research indicates that the immune system would improve upon an increase of CD4 cells if negative emotions are expressed (Petrie et al, 1998). The amygdala also links with the nucleus accumbens, the centre of positive emotions and it would develop an inhibitory effect on the amygdala (Le Doux, 2000). This again would affect the HPA-axis and lower the cortisol levels and improve the immune system (Taylor, 1999). In this study the experimental group on the third treatment day showed a significant improvement of the CD4 : CD8 cell ratio (p = 0.045) which indicates an improved immune system.

The physiological results also indicated a significant improvement of the peak flow measurement of the experimental group (p = 0.04). When the experimental and control group were compared, the experimental group indicated again a statistically significant difference (p = 0.001). Again, statistical evaluation of the groups at baseline indicated no differences in the groups therefore this change cannot be attributed to the baseline differences. Peak flow changes have been measured during psychosocial intervention of laughter and guided self-management of asthma patients, but no psychological intervention was reported during any other physiotherapy treatment (Wensley and Silverman, 2004; Liangas et al, 2003).

Surwit RS, Feinglos MN 1984 Relaxation-induced improvements in glucose tolerance is associated with decreased plasma cortisol. Diabetic Care 7:203-204.

Taylor DB 1999 Biomedical foundation of music as therapy, p 68. MMB Music, Inc., Saint Louis.

Thaut MH 2003 A scientific model of music in therapy and medicine. IMR Press, San Antonio.

Guidelines for Authors

Contributions to the South African Journal of Physiotherapy are invited on any topic related to physiotherapy or rehabilitation. All articles that are submitted to the journal for publication must be accompanied by two questions with the correct answers.

Types of Manuscripts
1. Research
2. Case report
3. Clinical report
4. Technical report
5. Literature review
All manuscripts should be accompanied by a reference list.

Legal Considerations
Contributions will be considered for publication in the South African Journal of Physiotherapy on condition that
- they have not been published previously.
- they have not been submitted for publication elsewhere.
- the Publications Division of the SASP reserves the copyright of all material published.

Acceptance of manuscripts
All manuscripts will be reviewed by two appointed referees. Identities of both authors and reviewers will be kept confidential in order to eliminate bias. Most articles require revision, in which case the reviewers’ comments will be returned to the authors for consideration and alteration.

Preparation and Presentation of Manuscripts
Articles
1. Articles should be restricted to between 2 000 and 2 500 words.
2. Three copies submitted should be typewritten with double spacing and wide margins (a word-processing file, in WordPerfect 5.1, or Word 6.0 on a disk should be included).
3. A title page should be supplied as a separate sheet and include the name(s), qualifications and affiliation(s) of the author(s), together with addresses and telephone numbers (at home and at work).
4. Each article must be accompanied by an abstract of not more than 200 words. This should be on a separate sheet and should be intelligible without reference to the main text. Up to five key words should be included.
5. All abbreviations should be spelt out when first used.
6. The metric system is to be used throughout.
7. Headings should be presented in upper and lower case. Avoid using capitals only.
8. Authors must provide contact details; telephone numbers and email as well as postal address and institutional affiliation (hospital, University).

Letters to the editor
- if a letter is intended for the correspondence column it should be marked “for publication”.
- it should be no longer than 400 words.

References
The accuracy and the completeness of references are of the utmost importance, and a maximum of 15 references per paper is required.

1. References in the Text of the Article
When referring to more than one paper, place the names of the principal authors in alphabetical order, eg Armstrong (1990), Jones (1988) and Smith and Jones (1990) refer to similar findings.
When there are two authors of a paper, mention both, eg Smith and Jones (1990), but when there are three or more, mention only the principal author and follow with et al, eg Thomas et al (1980).

When citing an author’s work within a sentence in the main text of your article, follow these examples:
- Smith (1982) refers to the length of time taken for the subject to respond to a stimulus.
- Smith and Jones (1990) refer to similar findings.

If quoting directly from another author, place the words in inverted commas and include the page number on which the quotation appears. For example: The clinical significance of increased tension or interruption of free movement in neural tissues is well recognised “...” (Yaxley and Jull 1990, p.143)

2. Reference list
This should appear at the end of the paper in alphabetical order. The author’s name should be followed by the initials (unpunctuated) and separated from the next author by a comma. The names of all the authors should be cited and et al should not be used in the reference list. Next should follow the date of publication and then the details of the publication.

a) Journal articles. Having stated the authors and the year of publication, the title of the article should be given in full. There should be a full stop after the title. This should be followed by the full title of the journal (abbreviations should not be used), then the volume number (not the part number) followed by a colon and then the first and last pages of the publication. The required format is illustrated in the following example: Erickson M, Upshur C 1989 Caretaking burden and social support: Comparison of mothers of infants with and without disabilities. American Journal of Mental Retardation 94:250-258

b) Books. The format as illustrated in the example should be followed. (Note the use of punctuation and capital letters).

Illustrations
- Tables and figures should be kept to a minimum and be on separate sheets.
- Each table should be numbered and have a clear title. Tables should not repeat material stated in the text. All tables and figures must be referenced in the text in sequential order.
- Don’t send photographs as an integral part of a Word document. Send them separately as a Jpeg file.
- All illustrations should be clearly marked on the reverse side with arabic numerals, author’s name and article, and an indication of the top side.
- All legends must be typed on a separate sheet.
- If a figure has been published before, the author must submit written permission from the copyright holder to reproduce the material.

Manuscript submission
- A covering letter, which must include the signature of each co-author, should accompany each manuscript.
- A word-processing file, in WordPerfect 5.1 or Word 6.0 should be included on a disk.
- Permission to reprint figures, extracts or abstracts from other publications should be included with the manuscript on submission.